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The effect of structurally viscous and viscoelastic factors on the laws of motion and heat trans-
fer in the entrance region of a channel are analyzed for the Deborah numbers,

The laws of motion and heat transfer of Newtonian fluids in the entrance region of channels have been
thoroughly studied. Results in good agreement with experiment have heen obtained by approximate and exact
methods of solution [1].

The motion of viscoelastic fluids in the entrance region of channels has been treated in a number of
papers, The main problem is the explanation of the effect of the rheological factors of fluids (the nonlinearity
of the flow curve and the value of the reversible elastic deformation) on the pressure losses, the velocity dis-
tribution, the entrance lengths, etc.

Experiments with viscoelastic solutions of various concentrations for Reynolds numbers from 6 to 2000
led Sylvester and Rosen [2] to the conclusion that the nonlinearity of the flow curve (the exponent n in a power
law) and the value of the reversible elastic deformation y, have opposite effects on the pressure losses in the
entrance region of a pipe.

Brocklebank and Smith [3] used flow visualization to measure the velocity field in various cross sections
of the entrance region and determined entrance lengths. They showed that entrance lengths for the flow of
viscoelastic fluids are appreciably greater than for a Newtonian fluid. The enfrance lengths increased with
increasing elasticity of the solutions. Similar results follow from theoretical studies [4, 5].

Unfortunately, unanimity in these questions has not yet been achieved. Experiments [6] with viscoelastic
solutions of various concentrations over a range of Reynolds numbers from 1 to 270 showed that entrance
lengths were 10-100% shorter than those obtained with inelastic fluids for the same power-law parameters.

Tandon [7] for flat channels and Bilgen [8] for circular pipes, using approximate methods of boundary-
layer theory, also concluded that the entrance length decreases with increasing elasticity.

In the present paper we use boundary-layer theory methods to investigate the effect of rheological factors
(structurally viscous §, and viscoelastic yg) on the laws of motion and heat transfer of a fluid in the entrance
region of a channel for the following velocity field.,

u=ulx, ¥, v=v(x, ), w=0. (1)

In developing flows of viscoelastic fields, including those in the entrance region of channels, the first
difference of the normal stresses txx — tyy is different from zero. Therefore, with the usual approxima-
tions of boundary-layer theory [1], the equations of motion of a viscoelastic fluid can be written in the form

ou ou op ot, dv
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Since 7 and tyx — tyy are zero in the flow core, Egs. (1) reduce to the form
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Here pU((@U/8x%) = (atyy/ax)core. Equation (3) is the starting point for the derivation of the integral momentum
equation, Omitting terms known for ordinary Newtonian fluids, we obtain finally
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In the stabilized flow region the velocity profile of a viscoelastic fluid obeying a linear fluidity law has
the form [9]
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Therefore, we approximate the velocity profile in the entrance reglon by a cubic polynomial
o=u/U () = g, + ak + a k2 + a .k, k=y/S. - (6)
We find the coefficients from the boundary conditions w = 0for k=0; w=1, dw/dk = 0 for k=1:
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Starting from these conditions, it can be shown that e, =0, a; = —6 + 8A + 9AB, a, =15 — 16A — 18 AB, and
a;==8 +8A +9AB, Therefore, .
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From the condition for a constant flow rate in a flat channel, assuming that the velocity profile is uni-
form at entry,

5 fudy—i—U(x)(b-——(S):Vb
0

we have
UV =0—A4A7Y A=056(x)b. 9)

Using the fundamental rule for differentiating under the integral sign, and taking account of the fact that in the
region where the boundary layer and the flow core join txx — tyy ~ 0, Eq. (4) can be written in the form

8
oU ok " 2 o5+ _ __2_ ) d 10
p[U——ax oo 180+ 02 2]~ (o) axb(,m t,,) dy. (10)
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Substituting the appropriate expressions from (7)-(9) into (10), we obtain finally

3
B+ A4+ ByA  dS 1 d —

For Deborah numbers De < 1 the relation between the symmetric stress and rate of strain tensors can
be written in the form [10]

Ty = — POy + () ey + (1) €+ () &y (12)
Here &j; = 8vi/0xj + Bvj/dx; is the rate of strain tensor, &y = 08;j/0t = Vi %;j/0%Xme0Vi/0Xm emjOVi/Oxm — ejm
is the acceleration tensor for steady flow, and the y;(I;) are experimentally determined properties of the visco-

elastic field [scalar functions of the second invariant of the rate of strain tensor, in our case I, = (dw/dy)?, or
of the second invariant of the stress tensor Ty = Tl

Using (12) and making the usual approximations of boundary-layer theory, the components of the stress
tensor appearing in Eq. (11) for the velocity field (1) have the form

Assuming [9] that the fluidity [;Li(Ig)]-iﬁcp(’I‘Z) =@y + 0 Tzi/ 2, and py/iy = A is the characteristic relaxation time

of the fluid, we can write
0,5
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In accord with (6)

13)
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For small values of 8/Re, = 0.04 we can limit ourselves to three terms in the expansion in (13), From (11) an
expression can be obtained for the dimensionless entrance length
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Fig, 1, Variation of boundary layer thickness with
length: 1) By/Rey = 0, vo/Rey = 05 2) 1,0, 0; 3) 0, 0.5;
4) 2,0, 0; 5) 0, 1,0; 6)50 0; 7) 10,0, 0; 8) 5.0, 0.5,
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Calculations with Eq. (14) showed that the entrance length increases with increasing 8/Re;, the charac-

teristic of the nonlinearity of the flow curve,

For values of B¢/Re; = 1 the expression for the tangential stress can be written in the form

W (A) = arctg

T (x) & g b Bo a, + 2a:k + 3a;k2
Re,  A{l — AA)

As a consequence of this the expression for the entrance length takes the simpler form
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Using Eq. (15) the development of the boundary layer (Fig. 1) and the local frictional drag coefficients
(Fig. 2) were calculated for various of By/Re; and ve/Re,. It is clear that the relative frictional drag coefficient
cf/cf increases with increasing magnitude of the reversible elastic deformation e, but decreases with in-
creasing 8.

Rheological fluids as a rule are characterized by Prandtl numbers Pr »> 1, Thus, it can be assumed that
the whole heat-transfer process in such fluids is confined to a narrow region near the wall where the velocity

gradient is constant,
The system of equations for the thermal boundary layer is

aT _ 62T ou dv
_— = _— 0.
6x + Oy 6y2 0x + oy
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Fig, 2. Variations of relative frigtional drag coefficients:
1) ByRey = 10,0, vo/Rey = 0; 2) 5.0, 0; 3) 5.0, 0.5; 4) 2.0,
0; 5) 1.0, 0; 6) By/Req = 0, Ye/Rey = 05 7) 0, 0.55 8) 0, 1.0.
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Fig. 3. Variation of relative heat-
transfer coefficient: 1) B¢/Reg = 0,
Ye/Rep = 0.1; 2) 0, 0,5; 3) 0, 1.0; 4)
1.0, 0; 5) 2.0, 0; 6) 5.0,0; 7)10.0, O.

The solution of these equations together with the linearized relation (6) for constant wall temperature can be
written in the form [11]

Nu, = 2b VZ}‘G‘V(ng )“”3/ Gexp (— #/9) k) |
0 0

y=0

Figure 3 shows the results of the calculation of the relative heat-transfer coefficient. The absolute
values of 8y/Re, and ye/Re; have a pronounced effect on Nu/Nuy. As one would expect for a fluid with Pr » 1,
the rheological factors have a relatively small effect on the heat-transfer coefficient,

NOTATION
X, ¥ are the longitudinal and transverse coordinates;
u, v are the longitudinal and transverse velocity components;
b =d/2 is the halfheight of channel;
0 ({x) is the boundary-layer thickness;
U(x) is the centerline velocity;
v is the average velocity over cross section of channel;
N . is the fluidity as 7 — 0;
0 is the parameter characterizing structural properties of fluid in linear fluidity law;
De is the Deborah number;
Pr is the Prandtl number;
Nuy is the local Nusselt number;
Nu, is the local Nusselt number for a Newtonian fluid;

Reg = 209sbV  is the Reynolds number;
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cf = 2Ty,/pV?  is the frictional drag coefficient;
cfy is the frictional drag coefficient of Newtonian fluid in stabilized flow region.
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THERMOCONVECTION WAVES IN ASYMMETRICAL FLUIDS

S. M, Aleinikov and A, A, Mirzoev UDC 536.25:534,21

The propagation of thermoconvection waves in asymmetrical fluids is investigated. The results
lead to a number of conclusions about the influence of microinertia and couple stresses on the
wave propagation velocity and damping.

Lykov and Berkovskii [1, 2] have investigated the propagation of thermoconvection waves in viscous and
viscoelastic fluids, Listrov and Shurinov [3] have studied the propagation of small shear disturbances in cer-
tain asymmetrical media. Here we consider the propagation of thermoconvection waves in asymmetrical
fluids, using the equations of motion with regard for compressibility in the form [4, 5]

dp .

— . d V) = O’ (1)

Py iv (pv)

p%:‘ = —gradp + k rot® — (4 + k) rot rot v + (A + 21 + &) grad div v - pg, @
p.l% = —2ke + krotv—yrotrote | (o -+ f 4 v) graddiv e. S

The tensile stresses tjj and couple stresses mjj are determined from the rheological equations

. B\ (0v, | Ov,\ , 1 oy,
tij=(—p+ Adivv) §; + (P '!‘—2) (a e ) + ke jm (2—3mrz ox (’)m) ) 4
g = o (div @) 8y + O + % (5)
0x; ox

J i

We write the heat-transfer equation in the form [6]

ar oT
o = 0AT s 6
pcp(at—{—vk 6x,,_> +R (6)
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